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ABSTRACT  

The COVID-19 outbreak has shown that Modeling and Simulation (M&S) methodologies are an important 
aspect to study the spread of the disease and assess the effect of different measures to diminish its negative 
effect. Although traditional models have been widely used, there is a need to build new, highly configurable 
disease models to explore multiple scenarios quickly. We present an M&S framework to perform rapid 
prototyping of pandemic spread using the Cell-DEVS space-based discrete-event modeling approach. This 
method supports age segmentation of the population, hospital-capacity-dependent deaths, and enforcing 
mobility restriction policies. This method is useful for studying the spread of the disease, as well as 
combining the simulation results with different visualization tools. 

Keywords: cellular models, Cell-DEVS, compartmental models, pandemics, SIRDS model. 

1 INTRODUCTION 

SARS-CoV-2 (COVID-19) is a highly contagious viral disease that spread worldwide in less than four 
months. As of March 19th, 2021, there have been more than 121 million cases globally and over 2.6 million 
deaths caused by the virus (Du et al. 2020). Authorities in each country have taken different measures to 
control contagions, some more successfully than others. In this aspect, mathematical models and computer 
simulations may help officials in the development of health strategies to tackle the expansion of the disease. 
Simulation models that can describe the dynamics of contagious diseases and predict the time course and 
behavior of contagions spread in a population are a key tool that can be used as a testbed for trying different 
health policies to control pandemics (Muscatello, et al. 2017). 
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Current studies of COVID-19 use a variety of methods to study the dynamics of the disease (Danon, et al. 
2020, Caccavo 2020). These studies are mainly based on i) Agent-Based Simulations, ii) Analytical models 
(mainly through Ordinary Differential Equations (ODEs)) and iii) Cellular Automata (CA). Here, we 
discuss a method to define complex models of the spread of diseases using a space-based approach 
(Cárdenas et al 2020) that can include the benefits of these three approaches. The method also makes it easy 
to add new disease model parameters. Similarly, combining the results with visualization tools and 
advanced graphical interfaces (including Jupyter notebooks, Geographical Information Systems (GISs), 
Building Information Models (BIMs), and spatial diagrams) is straightforward.  

The method is based on Cell-DEVS (Wainer 2009), which divides the space under study into a grid through 
the discretization of the original equations. The notation makes it easy to encode within a computer 
program. Adding new aspects to the models is easily accomplished, as is providing mechanisms to combine 
the models with the built environment (buildings, cities, transportation). 

In the following sections, we discuss the methodology, the tools to build epidemiological models, how to 
add new experimental results, new parameters (such as density, gender ratio, age, pre-symptomatic and 
asymptomatic transmission (Nishiura, et al. 2020)). We discuss different simulation scenarios and analyze 
the influence of the different parameters, showing the results available on Jupyter notebooks and remote 
execution servers. This allows us to demonstrate the use of the framework and how researchers can use this 
method in the modeling process without worrying in implementation details of the platform. 

2 RELATED WORK 

Most studies of COVID-19 are based on Agent-Based Simulations, ODEs and CA. Agent-based simulation 
models contagion as an emerging effect of individual agent behavior interaction (Cuevas 2020, Callejas, et 
al. 2020). This fine-grain modeling sometimes makes it difficult to run large-scale population simulations 
due to the high computing demands. Most ODE models (Heesterbeek, et al. 2015) are based on models that 
classify individuals in different “compartments”, representing the infection stages of the disease (Kermack 
and McKendrick 1927). Usually, the weakness of these models is that they assume a homogeneous 
population (Keeling and Danon 2009) and ignore the variable infection susceptibility of individuals. 
Similarly, they do not consider the spatial aspects of transmission (Hoya White, et al. 2007). 

CA models overcome these shortcomings and model contagious disease spreading (Fuentes and Kuperman 
1999, Hoya White, et al. 2007) and, more recently, have also been used to study COVID-19 spreading 
dynamics in combination with different variations of the compartmental models (Dai, et al. 2021, Ghosh 
and Bhattacharya 2020, Medrek and Pastuszak 2021). 

Our approach combines these three aspects: the individual interactions using a microsimulation approach 
like those in agent-based models, the spatial features of CA and the advantages of a formal method using 
mathematical compartmental models (Khalil and Wainer 2020) by combining them using the Cell-DEVS 
formalism. The following subsections discuss some of the aspects of the related work in these areas. 

2.1 Epidemiological SIR Models 

Kermack and McKendrick (1927) introduced a model to study the spread dynamics of the Black Death in 
London. It is one of the most widely used models (Dietz 1967), showing a simple yet effective 
epidemiological model. Its simplicity relies in dividing the population into compartments related to the 
stages of the disease through which individuals in a population must pass. Accordingly, population 
individuals can be Susceptible (S), Infected (I) or Recovered (R). In this SIR model, a person that has never 
been infected is assigned to the S compartment. Individuals who acquired the disease and can infect others 
are assigned to the I group. Those who have recovered and are now immune to the disease are assigned to 
the R compartment. The models contain a set of parameters that affect their dynamics. Different 
combinations of parameters can lead to scenarios that are catastrophic and others in which the disease 
subsides naturally (Pacheco and de Lacerda 2021). 
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SIR models have been extended and adapted, adding more equations representing new compartments or 
features. SEIR models consider Exposed (E) individuals to incorporate diseases that, upon infection, have 
an incubation period (Aron and Schwartz 1984). Their dynamics are described by the state diagram in 
Figure 1. Edges correspond to the functions associated to the change from one stage of the disease to 
another:  is the recruitment rate (i.e., births),  the infection rate,  the morbidity rate,  the recovery 
rate,  the immunity loss rate,  the mortality rate by other causes than the disease, and  the mortality rate 
induced by the disease. 

  
Figure 1. Transition state diagram for the SEIR model. 

A system of ODEs can be derived from the diagram, resulting in:  

 

Other extensions represent vaccination and isolation strategies (Small and Tse 2005). SEIRS models add a 
new compartment transition in which recovered people lose their immunity after a period (Bjørnstad, et al. 
2020). SEIRS models have been successfully used to study spread contagions of malaria (Ngwa and Shu 
2000), including models in which a portion of the recovered individuals can infect susceptible (disease-
free) mosquitos (Chitnis et al. 2008). Traoré et al. (2017) developed an SEIRS model showing that the 
transmission of the disease is highly affected by immature anopheles, showing that transmission can be 
controlled by reducing the population of mosquitos. More recently, SEIRS models have been adapted to 
the specific parameters of COVID-19. He et al. (2020) developed a model to study COVID propagation in 
Hubei, China, using a particle swarm optimization algorithm to fit the model’s parameters to real data. 
Rǎdulescu et al. (2020) analyzed different control strategies in a small town. López and Rodó (2021) also 
adapted an SEIRS model considering different levels of confinement measures in Italy and Spain, finding 
that a three-week long drastic lockdown would have strongly reduced contagions. 

The SIRDS model (Anderson and May 1992) is another extension that models the spreading of fatal 
diseases explicitly, by adding a compartment for Deceased (D) individuals. The model includes different 
features of infection, recovery, and lethality of the disease (Caccavo 2020). Several studies on COVID-19 
used this model. Fanelli and Piazza (2020) studied the temporal dynamics of the virus outbreak in China, 
Italy, and France, and they found that the recovery rate was similar among the different countries. However, 
infection rate as well as the mortality rate differed. They were able to estimate the number of mechanical 
ventilation units needed during the peak of the disease. Calafiore et al. (2020) used a variation of the SIRDS 
model that considers time-varying parameters to capture control measures applied by authorities. The 
method was applied to the most affected regions of Italy, resulting in accurate predictions for early and late 
stages over a time window of 41 days. Other SIRD models were used to study the spread progression in 
India (Chatterjee, et al. 2020) and the USA (Fernández-Villaverde and Jones 2020). 

2.2 Cellular Automata Epidemics Modeling 

Cellular Automata (CA) are discrete-time models that consist of cells organized as n-dimensional infinite 
lattices. Each of the composing cells has a state (defined by a discrete value) and a local computation 
function. This local function uses the present value of the cell and a finite set of its neighbor cells to compute 
the new state. In CA, evolution occurs by means of the parallel execution of each cell’s local function at 
every timestep. These functions, which only depend on the results of a local execution in each cell, generate 
a global emergent behavior that can be studied at the scale field (Wolfram 2002).  

S E RI
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In the context of epidemics, several CA models have used SIR-based approaches to model the spread of 
contagious diseases (Johansen 1996). Hoya White et al. (2007) proposed a CA implementation of an SIR-
like model in which each cell represents a portion of the population, and individuals travel through the cells. 
Zhong et al. (2009) developed a geographical SIRS CA in which the cell space represents a geographical 
region with irregular cells of varying dimension. The model was validated for the spreading of SARS in 
2003 in the city of Beijing, China. Similarly, López et al (2014) consider an SEIRS-based CA model with 
probabilistic state transitions. Each cell represents an individual, allowing for individual heterogeneity. Bin 
et al. (2019) defined an SEIRDS-based CA in which they explore how population density, gender and age 
can influence the spread of infectious diseases. Each cell represents population density, reducing the 
computing needs for large populations. The model was tested simulating the spread of Influenza H1N1 in 
Beijing in 2009, obtaining similar results to real data. 

Following the outbreak of the COVID-19 pandemic, several CA models have been proposed. Dai, et al. 
(2021) proposed a CA model using a SIRD-like approach and reproduced different spread patterns in New 
York and Iowa. Ghosh and Bhattacharya (2020) added a new compartment to represent infected individuals 
that require hospitalization or are quarantined. Medrek and Pastuszak (2021) developed an SEIR-based CA 
for the study of the epidemic trends in Poland, France, and Spain. They included additional parameters, 
such as age-dependent death rate. The proposed model reproduced mortality rates in accordance with 
official data for the three countries under study.  

Many of the above-mentioned studies consider individuals to be mapped to a cell in a one-to-one fashion, 
in an agent-based modeling world view. This results in high computing demands for real-world scenarios; 
therefore, just a fraction of the population is simulated. However, CA are flexible and simple, and they 
permit the study of spatial population distributions. The discrete-time nature of CA also poses a few 
shortcomings, as it considers time as isomorphic to natural numbers ℕ (i.e., time advances at constant 
steps); thus, cell state changes cannot occur between timesteps (Wainer 2009). Should it occur, the new cell 
state should either be postponed to the next step or be neglected. This makes it difficult to define advanced 
timing function conditions for each cell. The Cell-DEVS formalism overcomes these issues by combining 
CA and the Discrete EVent System Specifications (DEVS) (Zeigler et al. 2000). 

2.3 The Cell-DEVS Formalism 

Cell-DEVS defines a spatial model as a collection of cells arranged in a grid, using continuous time and 
discrete-event M&S (Wainer 2009). Cells are DEVS atomic models, and a procedure to couple cells is 
defined to build a cell space. Figure 2(a) shows a schematic view of a cell: they become active upon the 
occurrence of external events; otherwise, they remain quiescent. When an input is received, the external 
transition function triggers a local computation function (t). If the state of the cell changes, an internal 
transition is scheduled to transmit the new state value after a time specified by the delay function (d).  

The local computation function uses values received from its neighborhood (a finite set of nearby cells). 
The rules are defined by (i) a precondition, (ii) an output value for the cell’s state and (iii) a delay time. It 
means that, if the evaluation of the precondition (i) is satisfied, the cell will change its state and output the 
new value to its neighborhood (ii) after a delay time (iii). Figure 2(b) shows a cell space where the outputs 
of a cell are transmitted to the cells in the neighborhood. Cell-DEVS provides a higher level of detail than 
epidemiological models that consider the population as a whole.  

 

Figure 2. Cell-DEVS model: (a) schematic of a cell; (b) two-dimensional Cell-DEVS model. 
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3 CELL-DEVS SIRDS COMPARTMENTAL MODEL 

We define our Cell-DEVS SIRDS model as an extension of the CA SIR model. Compared to our previous 
work (Cárdenas et al., 2000), the presented model refines the compartment transition functions, divides the 
population into age segments, and integrates mobility restriction policies and the effect of congested 
hospital ICUs. The state of each cell  at a given time  in the scenario, , is represented by the 5-tuple: 

          (1) 

where  corresponds to the population of the region represented by the cell (a fixed parameter),  is the 
portion of susceptible population,  represents those who are infected,  is the ratio of those who 
recovered from the disease, and  is the proportion of deceased people. The model divides the population 
into  age segments (parameters are organized as N-tuples). For example, we refer to the population of cell 

 in the nth age segment as . This allows us to study patterns that depend on the age of the 
individuals. For each segment, a part of the population becomes infected, as described in Eq (2): 

       (2) 

The ratio of susceptible individuals infected in cell  at time  depends on the previous susceptible ratio 
 multiplied by the mobility factor  (the probability of an individual in age segment n in cell 

 moving to a different area at time ), the susceptibility factor  (the probability of infection of 
a susceptible individual in age segment ), and the exposure factor  (the probability of exposure of 
a susceptible individual of age segment  at time ). For each age segment  of every cell  in the 
neighborhood  of cell , the exposure factor uses the connectivity factor  (the probability of a 
person of age  in cell  moving to cell ), the population ratio of the age segments involved, the 
mobility factor  (the probability of an individual of age  in cell  moving at time ), and 
the virulence factor (i.e., the probability that an infected individual of age  exposes others). The 
exposure factor cannot be greater than 1. Eq (3) illustrates how to compute : 

    (3) 

Additionally,  infected individuals recover according to the recovery factor , and  
individuals die according to the mortality factor : 

         (4) 

For every cell and age segment, the sum of the recovery and the fatality factors must be less than or equal 
to 1 at any given time (i.e.,  cannot be greater than ): 

 

Finally, depending on the immunity factor  (the probability of recovered individuals remaining in the 
recovered compartment), individuals may lose their immunity and become susceptible again: 

         (5) 

Eq. (6) shows how all the compartments are updated for every age segment  when the cell’s 
local computation function is triggered: 
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     (6) 

3.1 Mobility Restriction Strategies 

Kraemer et al. (2020) showed that the COVID-19 outbreak in 2020 was affected by human mobility. Our 
model allows defining mobility restriction policies in each cell. The value  shown in Eq (8) uses a base 
mobility restriction factor  (mobility restrictions for people of a given age) and a disobedience factor 

 (people ignoring the mobility restrictions). We can use age-based restrictions to study reduced mobility 
of students of different ages, people in long-term care institutions, etc.: 

        (8) 

The value of  depends on the mobility restriction policy applied in cell  at time , . We define 
four different mobility restriction policies. 

Base: There are no restrictions. 

Type 1: Cyclic lockdown with scheduled periods of increased economic activity in the whole region (Karin, 
et al. 2020). There are  different policies , each of which imposes a mobility restriction 
factor  that depends on age. The restriction is applied during  consecutive days. After this time, the 
next mobility policy  is applied. 

Type 2. Mobility restrictions proportional to the percentage of infected people in each cell. Impact on the 
mobility  varies according to age. Mobility is gradually reduced as the total infected ratio grows (9): 

        (9) 

Type 3. Mobility restrictions when a threshold of infections is reached, until the ratio decreases. We use  
mobility policies , triggered when the ratio of infected people reaches the mobility start, 

. Mobility policies are sorted in increasing order of their start trigger (i.e., 
). The policy imposes a mobility restriction  for age segment n until the ratio of infected 

people reaches the next mobility phase  or is lower than the mobility stop, ( ). These 
triggers provide a hysteresis-like pattern in the mobility restrictions. If at  the mobility policy  in 
cell  is , then . The triggers are applied as follows: 

        (10) 

3.2 Modeling Hospital-Capacity-Dependent Deaths  

People with severe effects of the disease may need medical assistance. In these cases, hospital capacity may 
increase mortality for those that cannot receive proper assistance (Wood, et al. 2020). Eq. (11) describes 
how  and  (recovery and mortality) capture the effect of high hospital capacity in our model: 
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      (11) 

where  is the base recovery factor (  if hospital ICUs are not full),  is the base mortality 
(  if masks are not used),  is the hospital capacity (minimum ratio of the total infected population 
to consider that hospital ICUs in the cell are full), and  and  the recovery reduction and mortality 
increment factors (the impact of congested hospitals on the recovery and the mortality factors, respectively). 

4 MODEL IMPLEMENTATION 

A Cell-DEVS version of the model presented in Section 3 was implemented using the Cadmium simulator 
(Belloli, et al. 2019), a C++17 library that can be integrated to other projects easily. Cadmium follows a 
strong-typed approach to check that all the described models comply with the DEVS formalism at compile 
time. Additionally, Cadmium supports spatial models based on Cell-DEVS with irregular neighborhoods. 
To define Cell-DEVS models, we use three auxiliary data structures: one to represent the cell’s state; 
another that contains all the fields used to describe the neighborhood; and one for cell configuration, 
including additional parameters to modify the model behavior. The implementation in Cadmium is directly 
derived from the model above. A cell’s state is described by the SIRD data structure as follows: 

struct SIRD { 
  std::vector<int> population;       // cell population (age-dependent). 
  std::vector<double> susceptible;   // ratio of susceptible people (age-dependent). 
  std::vector<double> infected;      // ratio of infected people (age-dependent). 
  std::vector<double> recovered;     // ratio of recovered people (age-dependent). 
  std::vector<double> deceased;      // ratio of deceased people (age-dependent). 
  std::vector<double> mobility;      // mobility factor (age-dependent). 
} 

Comparing with Eq. (1), the mobility factor  is now part of the state. This allows us to compute the 
mobility factor and share it with neighboring cells, avoiding duplicate computations. Note that age segment-
dependent tuples of the models are implemented using the C++ vector sequence container which dimension 
is not hard-coded. This allows us to run simulations of models with different numbers of age segments by 
modifying the model configuration without having to re-compile it. The only element that describes the 
relationship between neighbors is the connectivity factor  (see Eq. (3)). Thus, the selected neighborhood 
data structure corresponds to a std::vector<double> container. 

Cadmium Cell-DEVS models local_computation for the local computation function  and output_delay 
for the output delay function . When a cell receives an input, the local_computation method is triggered. 
The behavior of local_computation is like Eq. (6) plus the calculation of the mobility factor (which is 
now a part of the cell state). Some of the state values are discretized using the numerical precision defined 
by the prec configuration parameter. The higher precision, the more accurate the results. However, a cell’s 
final state will take longer to converge to a stable value, leading to increased simulation time. 

The output_delay function defines the time to wait before sending a message with the cell’s state change 
to its neighbors. In this model, output_delay is defined as: 

double output_delay(SIRD const &cell_state) const override { return 1.0 / scaler; } 
The scaler configuration parameter permits the delay applied to all the events to be reduced or increased. 

The proposed M&S framework only needs to be compiled once, and it can be used to explore different 
scenarios by providing a parameter file, enabling the execution of multiple experiments with ease. More 
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details regarding the implementation of this model and how to configure different simulation scenarios and 
visualizations can be found in our public GitHub repository. 

5 SIRD CELL-DEVS CASE STUDIES 

The framework was used to build different scenarios. We used the results in (Hoya White et al. 2007) and 
(Zhong et al. 2009) to verify the correctness of the results obtained, as the former presents results in 
accordance with reality for the spreading of infectious diseases and the latter was validated using epidemic 
data of the SARS outbreak of 2002-2003 of Beijing, China. After building a baseline simulation, the tools 
can be used to explore how different measures can affect the propagation of a disease. 

5.1 Baseline Scenario 

The baseline scenario uses a lattice of 25 by 25 cells with 100 individuals per cell. They are divided into 
four age groups: 20 children, 40 young adults, 20 adults, and 20 elderlies. No mobility restrictions are used. 
Susceptibility, virulence, and mobility factors correspond to their base values. The remaining parameters 
of the model can be found in the configuration file of the GitHub repository. Initially, almost the entire 
population is susceptible to the disease. However, 1% of the young population of the cell (0,0) are infected. 
Figure 3 shows a simulation output for this case study. 

 

Figure 3. SIRD curves of the baseline scenario. 

During the first 10 days, the overall infected ratio is negligible. Then, the number of infected individuals 
increases until Day 65, which coincides with the infection peak. At the same time, the number of recovered 
persons increases exponentially. At Day 85, the susceptible ratio is close to 1%. At the end of the simulation, 
89% of the population have recovered, whereas 11% of the individuals have died. 

5.2 Enforcing Mobility Restrictions  

Using our simulation environment, we can execute a variety of experiments with ease. In this way, modelers 
can explore multiple scenarios to assess the simulated results of different measures. As an illustrative 
example, we propose three different mobility restriction policies (described in Table 1). Using the same 
configuration parameters as in the baseline scenario, we explore the effectiveness of these mobility 
restriction policies, taking into consideration different degrees of disobedience to these restrictions. 

Figure 4(a) compares the overall infected ratio peak depending on the applied mobility restriction policy. 
All the mobility restriction policies can flatten the baseline infection curve, leading to smaller infection 
ratio peaks and reducing the probability of collapsing hospitals’ ICUs. As expected, the higher the 
percentage of the disobedient population is, the less effective any mobility restriction policy. The Type 2 
mobility restriction policy is less successful when lowering the peak of infections. On the other hand, the 
Type 3 policy is the most effective when the disobedience factor is less than 30%. The Type 1 policy presents 
more resilience to disobedience and presents better results for disobedience factors over 30%. This is 
because the mobility restriction factor of this policy is fixed, regardless of the current infection ratio. 
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Table 1. Configuration parameters of the proposed mobility restriction policies. 

Policy Type Configuration Parameter Value 

Type 1 

Phase  
Mobility restriction,   

Phase duration,  4 

Phase  
Mobility restriction,   

Phase duration,  3 

Type 2 Impact on mobility,   

Type 3 

Phase  
Mobility restriction,   

Start trigger,   

Stop trigger,  0 

Phase  
Mobility restriction,   

Start trigger,  0.05 

Stop trigger,  0 

Phase  
Mobility restriction,   

Start trigger,  0.1 

Stop trigger,  0.05 

Figure 4(b) shows the percentage of the population that remained susceptible during the whole simulation. 
For disobedience factors below 50%, all the mobility restriction policies can reach herd immunity, and the 
pandemic is stopped before all the population is infected. However, the Type 3 restriction policy excels 
over the other approaches. If all the population obeys the mobility restriction directives, this policy can 
keep 25% of the population uninfected (15 percentage points higher than the Type 1 policy). The advantage 
of Type 3 policy over the others is significant for disobedience factors below 60%. Scenarios whose 
disobedience factor is over 60% are not able to reach herd immunity, and end with the susceptible 
compartment almost empty. 

 

Figure 4. (a) Peak of infections depending on different mobility restriction policies and disobedience 
factors; (b) Effect of different of lockdown policies on the susceptible compartment. 

Figure 5 compares the percentage of deceased people at the end of the simulation depending on the mobility 
restriction and the disobedience factor. Again, the Type 3 policy shows the best results, as it can reduce the 
percentage of deceased people by almost two percentage points compared to the baseline scenario. The 
Type 2 mobility restriction outperforms the Type 1 mobility restriction. This is because the former policy 
specially protects adults and elderlies. These age segments are more prone to die due to the disease, and 
thus reducing their mobility implies a significant decrease in deaths. For disobedience factors above 60%, 
the effect of the mobility restriction policies is very similar to the baseline scenario. 
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Figure 5. Effect of different of lockdown policies on the deceased compartment. 

These case studies show the flexibility that the simulation environment brings to a variety of simulations, 
including a variety of parameters from age of the population up to quality of masks and degree of 
compliance with interventions. These modifications are simple to add when new research information is 
available. This framework includes Jupyter Notebooks to analyze the simulation logs and generate different 
charts to interpret the evolution of the epidemics. These additional visualization tools are also publicly 
available at the environment’s GitHub repository. 

6 CONCLUSIONS 

We introduced a Cell-DEVS model to study the spread of pandemics using a SIRDS compartmental 
approach. The model allows us to quickly define prototypes related to the disease, and to visualize the 
simulation results for advanced analysis with simple configuration files. The use of a formal approach 
allows the modelers to focus on modeling aspects without worrying about the simulation low level 
complexities, which are handled by the tool. A base case SIRD scenario was simulated to describe its 
functionality. We also explored the effects of mobility reduction policies considering different levels of 
obedience. The effects on infection reduction due to restricted mobility were clear. As expected, there are 
variations in the overall infected population depending on the type of policy and the percentage of the 
population that follows the restrictions, which seems to be in agreement with the behavior of the spreading 
of a contagious disease under such control measures. The scenarios show the flexibility and potential of 
this platform to conduct simulation experiments of contagious disease spreading.  

The proposed model library can represent social dynamics and supports rapid model changes, allowing 
policy makers to develop low-risk, evidence-informed, valid, and timely effective strategies to control the 
spreading of infectious diseases, like the current COVID-19 pandemic. Also, modelers can use this model 
as a basis to develop new algorithms to simulate different epidemics. 

As future work, we intend to validate the proposed Cell-DEVS model against real-world data on COVID-
19 spreading across a city. This will enable us to fine tune different parameters, like the appropriate 
population scale represented by each cell of the model for more accurate results. This will also help us to 
test the simulator performance, and to define a proper tradeoff between results precision and good 
performance. 
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